Irrigation and Drainage Engineering Department

Old Syllabus of IDE Dept-

Fluid mechanics 3=2+1IDE 231 Syllabus: Properties of fluids: Ideal and real fluid. Pressure and its measurement, Pascal's law, pressure forces on plane and curved surfaces, centre of pressure, buoyancy, metacentre and metacentric height, condition of floatation and stability of submerged and floating bodies; Kinematics of fluid flow: Lagrangian and Eulerian description of fluid motion, continuity equation, path lines, streak lines and stream lines, stream function, velocity potential and flow net. Types of fluid flow, translation, rotation, 1 circulation and vorticity, Vortex motion; Dynamics of fluid flow, Bernoulli's theorem, venturimeter, orifice-meter and nozzle, siphon; Flow through notches, weirs and open channel; Laminar flow: Stress-strain relationships, flow between infinite parallel plates - both plates fixed, one plate moving, discharge, average velocity, shear stress and pressure gradient; Laminar and turbulent flow in pipes, general equation for head luss-Darcy, Equation, Moody's diagram, Minor and major hydraulic losses through pipes and fittings, flow through network of pipes, hydraulic gradient and energy gradient, power transmission through pipe; Dimensional analysis and similitude: Rayleigh's method and Buckingham's 'Pi' theorem, types of similarities, dimensional analysis, dimensionless numbers. Introduction to fluid machinery. Lesson plan: Lecture Topics Page no. Book Article no. No. **Properties of fluids:** 1.1, 1.2.1, 1.2.2, 1-8 Introduction, properties of fluid like mass 123, 124, 13, density, specific weight, specific volume, 1.3.1, 1.3.2, 1.3.3, specific gravity, viscosity, types of fluids, 1.3.4.1.3.5 22-25 2 Compressibility, surface tension, and capillarity 1.5,1.6, 1 3 Pressure and its measurement fluid pressure at point, Pascal's law, absolute, 2.1, 2.2, 2.4, 37-33

gauge ,atmospheric and vacuum pressure

Simple manometers: piezometer, U-tube

Measurement of pressure:

4,5,6,7

 manometer, single column manometer,

 Differential manometers:

 U-tube differential

 manometers, Inverted U-tube differential

 manometer, Mechanical gauges

 2.6

 70-72

 8,9,10

 Pressure forces on plane and curved surfaces:

 Introduction, total pressure and center of

2.5, 2.6, 2.7,

Chapks Hydrostatic forces on surfaces

38-39

39-48

1

2

pro

	pressure, vertical plane surface submerged in liquid, horizontal plane surface submerged in liquid, inclined plane surface submerged in liquid, curved surface sub-merged in liquid.	3.1, 3.2, 3.3, 3.4, 3.5, 3.6	65-67, 81-83, 90-92	1
11,12	Buoyancy and Floatation: Introduction, buoyancy, center of buoyancy, meta- center, metacentric height, analytical method for metacentric height	4.1, 4.2, 4.3, 4.4, 4.5, 4.6	110-111 114-117	1
13	Condition of floatation and stability of submerged and floating bodies	47	121-122	.1
14	Kinematics of fluid flow: Introduction, methods of describing fluid motion, types of fluid flow, continuity equation, continuity equation in three-dimensions,	5.1, 5.2, 5.3, 5.4, 5.5, 5.6.	139-141, 145-146	1
15	Description of the flow pattern: Path lines, streak lines and stream lines, stream tube	6.4	245-248	2
77.28	Rotational and irrotational flow and circulations and vorticity	6.8 6.9	266-267 269-270	2
	Velocity potential Steam function	6.10 6.11	271-272 273-275	2
	Equipotential lines and flow net	6.12	275-277	2
15	Dynamics of flow : Introduction, equations of motion, Euler's equation of motion. Assumptions, Bernoulli's equation for real fluid,	6 <u>1.6.2.</u> 6.3,6.5, 6 6, 6.7	233-235 239	1
17	Venturimeter, Practical applications of Bernoulli's equations Orifice meter,	6.7.1 6.7.2 6.7.3	241-243, 253-255, 257-258,	1
	Nozzle (Pitot-tube) Siphon	11.15	528-530	2
18,19, 20	Flow through notches, weirs: Introduction, classification of notches and weirs,	8.1, 8.2	319-320	1
	Discharge over a rectangular notch or weir Discharge over a triangular notch or weir	8.3 8.4	320 321	1
	Discharge over a trapezoidal notch or weir Discharge over a stepped notch	8.6 8.7	325-326 326 324-325	1
	Advantages of triangular notch or weir over rectangular notch or weir Flow through orifices and	8.5	524-525	
21	Mouth pieces: Introduction, classifications of orifices, classifications of mouthpiece	7.1, 7.2, 7.12	285 & 306	1
	Flow through an orifice Hydraulic coefficients	7.3 7.4	285-286 286-287	1
	Flow through an external cylindrical	7.13	306-307	1

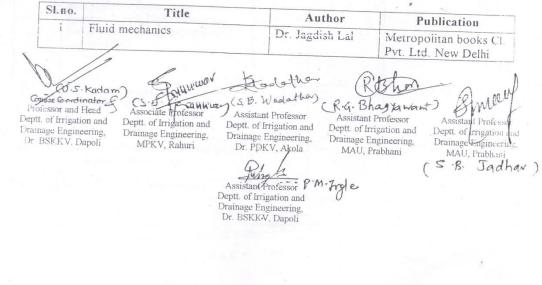
22	Flow in open channels:			
1	Introduction, classification of flow in channels	16.1, 16.2	664-665	
	Discharge through open channel by Chezy's	16.3	666-667	
	formula and Manning's formula	16.4.3	672	
	Most economical section of channel	16.5, 16.5.1	675-676	
		16.5.2, 16.5.3	678-680	
			688-689	
23,2	Laminar flow:		000 007	-
	Introduction, relation between shear and pressure gradients in laminar flow	13.1, 13.2	605-606	
	Laminar flow between parallel plates- both	13.6	616-619	2
	plates at rest			
	Laminar flow between parallel plates- one plate	13.7	620-623	2
	moving and other at rest			-
25,26	Turbulent flow:			1
	Introduction, Reynolds experiment	10.1, 10.2, 10.3	391-394	
	Frictional loss in pipe flow	, , , , , , , , , , , , , , , , , , , ,	571-574	
	Shear stress in turbulent flow	10.4	395-396	1
	Velocity distribution in turbulent flow in pipes	10.5	396-397	1
27,28		11.1	420	1
,	Introduction, loss of energy in pipes	11.2	420	I
	Darcy-Weisbach equation, Chezy's equation	11.2	420-421	1
	Moody's diagram /		683-684	6
h.e.	Minor head losses	11.4		E
1	WINOT Read TOSSES	11.4	425-428	1
Tit	Hydraulic gradient and energy line	11.5	434-436	
		11.5 .	443-444	j
29	Flow through network of pipes:			
	Flow through pipes in series	11.7	454-455	1
	Flow through pipes in parallel pipes	11.9	459	I
	Flow through branched pipes	11.10	474-475	1
	Power transmission through pipe	11.11	480-481	.1
30, 31	Introduction, secondary or derived quantities, dimensional homogeneity	12.1, 12.2, 12.3	502-504	1
	Methods of dimensional analysis:	12.4	504-509	1
	Rayleigh's method	12.4.1	Part and	
	Buckingham's π -theorem	12.4.2		
	Types of similarities (similitude)	12.6	522-523	1
	Types of forces acting in moving fluid	12.7	523524	1
-	Dimensionless numbers	12.8	524-525	1
32	Introduction of fluid machinery:		027-020	1
	Hydraulic accumulator- simple and differential	25.1, 25.2	1201-	2
		25.3, 25.4	1219	-
			1	
	hydraulic crane, hydraulic lift, hydraulic ram, air	25.5, 25.6		

.

Practicals:

- 1. Study of manometers
- Study of pressure gauges;
- 3. Verification of Bernoulli's theorem;
- 4. Determination of coefficient of discharge of venturimeter
- 5. Determination of coefficient of discharge of orifice meter;
- 6. Determination of coefficient of friction in pipeline;
- 7. Determination of coefficient of discharge for rectangular
- 8. Determination of coefficient of discharge for rectangular triangular notch;
- Determination of coefficient of discharge, coefficient of velocity and coefficient of contraction for flow through orifice;
- 10. Determination of coefficient of discharge for mouth piece;
- 11. Determination of metacentric height;
- 12. Determination of efficiency of hydraulic ram;
- _13. Study of current meter;
- 14. Velocity distribution in open channels and determination of Manning's coefficient of rugosity.

BOOKS :


de.

(Fr

Text book/books

SLno.	Title	Author	Publication
· .	A text work of find mechanics	Dr. R.K.Bansal	Laxmi Publications (p)
1	and hydraulic machines (Eighth edition)		Ltd. New Delhi
2	Hydraulics and fluid mechanics (including hydraulic machines) (Thirteenth edition)	Dr. P.N. Modi Dr. S.M. Seth	Standard Book House, Delhi-6

eference book/books

Theory

Irrigation Engineering: Irrigation, impact of irrigation on Human Environment, some major and medium irrigation schemes of India, purpose of irrigation, sources of irrigation water, present status of development and utilization of different water resources of the country; Measurement of irrigation water, weir, notches, flumes and orifices and other methods; water conveyance, design of irrigation field channels, underground pipe conveyance system, irrigation structures, channel lining; land grading, different design methods and estimation of earth work and cost; soil water plant relationship, soil water movement, infiltration and its equations, evapotranspiration, soil moisture constants, depth of irrigation, frequency of irrigation, irrigation efficiencies; surface irrigation methods of water application, border, check basin, furrow and contour irrigation.

Practical

Measurement of soil moisture by different soil moisture measuring instruments; Measurement of irrigation water; Measurement of infiltration characteristics; Determination of bulk density, field capacity and wilting point; Estimation of evapotranspriation; Land grading exercises; Design of under ground pipeline system; Estimation of irrigation efficiency; Study of advance, recession and computation of opportunity time; Infiltration by in flow outflow method; Evaluation of border Irrigation method; Evaluation of furrow irrigation method; Evaluation of check basin irrigation method

Lect.	Topics	Article	Page No.	Book
No.		No.		
1	Irrigation: Impact of irrigation on human environment	1.1,1.4,	1-2,7-15	2
		1.5		
2	Some major and medium irrigation schemes of India	2.2.3	37-44	2
3	Sources of irrigation water:		23-44	1
	Surface water sources			
	Ground water resources	1.6	15-16	2
4	Present status of development and utilization of different	1.13	48-52	1

Lesson Plan:

	water resources of the country			
5,6	Measurement of irrigation water	Chapter 4	285-315	1
7,8	Water conveyance system:		316-350	
	Open Channel:			1
	Design of open channel	5.1, 5.2		
	Lined channels	5.3, 5.4		
	Irrigation structures for open channel	5.5, 5.6		
9,10	Under ground pipe conveyance System:		356-391	
	Pipes for underground water distribution system,			1
	Design capacity of pipeline, installation of concrete	5.9, 5.10		
	Pipeline, structures of underground pipelines,	5.11,5.12		
	Design of underground pip line irrigation system,	5.13,5.14		
	common troubles of underground pipelines			
11,12,	Land grading:			
13	Introduction,	6.1	392-412,	1
	Criteria for land grading,	6.2	416-420,	
	Land clearing,	6.5	6.5	
	Land leveling design methods (plane method)	6.6	6.6	
	Earthwork quantities	6.9	6.9	
	Equipment for land grading and field layout			
14,15,	Soil-plant-water relationship:			
16	Soil physical properties influencing irrigation such as	7.1	448-458	1
	soil texture, soil structure, bulk density, capillary and			
	non-capillary pores, soil consistency,			
	Volume and mass relationships of soil constituents,	7.3	462-464	
	kinks of soil water.			
17,18,	Infiltration:			
19	Movement of water into soils:	7.4	464-472	
	Infiltration, factors affecting infiltration rate,			
	Measurement of infiltration, infiltration equation			
	$Y=at^{a}+b$			
20,21	Soil moisture constants:		478-482	1
	Saturation capacity, field capacity, moisture equivalent,			

	permanent wilting percentage, available water, soil			
	moisture characteristics curves			
22	Evapotranspiration:	7.8	512-517	1
	Evaporation, transpiration and consumptive use			
23	Measurement of evapotranspiration:	-	518-520	1
	Lysimeter experiment, field experimental plots, soil			
	moisture depletion studies, water balance method.			
24,25	Estimation of evapotranspiration from climatological	-	522-537	5
	data:			
	Blaney-Criddle method			
	Thornthwaite formula			
	Modified Panman formula			
	Selection crop coefficient for estimating ET (crop)			
	Panman-Monteith		17-78	1
	Jensen-Haise,			
	Hargraves-Samani			
26	Depth of irrigation:		542-544	1
	Net irrigation requirement			
	Gross irrigation requirement			
	Irrigation frequency		544-545	1
	Irrigation period			
27	Irrigation efficiencies:	7.10	546-549	1
28	Irrigation methods:		585	1
	Surface irrigation methods: Introduction and			
	classification			
29,30	Border irrigation:	8.1	585-603	1
	Introduction, types, specifications, hydraulic of border	8.2		
	irrigation, Design of border irrigation	8.3		
31	Check basin irrigation:	8.4	603-610	1
	Introduction, types, specifications, hydraulic of check	8.5		
	basin irrigation, Design of check basin irrigation	8.6		
32	Furrow irrigation:	8.7	610-622	1

Introduction, types, specifications, hydraulic of furrow	8.8		
irrigation, Design of furrow irrigation, contour irrigation	8.9	613-614	

Practical:

- 1. Measurement of soil moisture by gravimetric method.
- 2. Measurement of soil moisture by tensiometer, gypsum block, pressure plate apparatus.
- 3. Determination of bulk density.
- 4. Measurement of irrigation water using weir, notch, orifices, flumes and siphon tubes.
- 5. Measurement of infiltration using double ring infiltrometer.
- 6. Determination of field capacity, wilting point.
- 7. Estimaton of evapotranspiration based on climatological data.
- 8. Study of Land gradingand levehing.
- 9. Design of irrigation open channel.
- 10. Design of under ground pipeline system
- 11. Estimation of irrigation efficiencies.
- 12. Study of advance, recession and computation of opportunity time
- 13. Evaluation of border Irrigation method.
- 14. Evaluation of furrow irrigation method.
- 15. Evaluation of check basin irrigation method.

Books:

Text book/ books

Sr.	Title	Author	Publication
No.			
1	Irrigation: theory and practice	A.M. Michael	Vikas publishing house Pvt. Ltd. New Delhi
2	Irrigation Water Management Principles	Dilip Kumar	Prentice-Hall of India Pvt.
	and Practice	Majumda	Limited. New Delhi
3	Land and Water Management Engineering	V.V.N. Murthy	Kalyani publishers, New
			Delhi
4	Irrigation Principles and Practice	Israelsen & Hunson	
5	Crop evapotranspiration (Guidelines for	R.G. Allen, L.S.	FAO, Rome
	computing crop water requirements) FAO-	Pereira, D. Raes, M.	
	56	Smith	
6	Design and Operation of Irrigation System	Ed. M.E. Jenson	ASCE.

IDE-353

Theory

Occurrence and movement of ground water, aquifer and its types, classification of wells. steady and transient flow into partially, fully and non-penetrating and open wells, familiarization of various types of bore wells common in the state, design of open well, groundwater exploration techniques, methods of drilling of wells, percussion, rotary, reverse rotary, design of assembly and gravel pack, installation of well screen, completion and development of well, groundwater hydraulics-determination of aquifer parameters by different method such as Theis, Jacob and Chow's etc. Theis recovery method, well interference, multiple well systems, surface and subsurface exploitation and estimation of ground water potential, quality of ground water, artificial groundwater recharge planning, modelling, ground water project formulation. Pumping Systems: Water lifting devices; different types of pumping machinery, classification of pumps, component parts of centrifugal pumps; pump selection, installation and trouble shooting; design of centrifugal pumps, performance curves, effect of speed on head capacity, power capacity and efficiency curves, effect of change of impeller dimensions on performance characteristics; hydraulic ram, propeller pumps, mixed flow pumps and their performance characteristics; priming, self priming devices, rotodynamic pumps for special purposes such as deep well turbine pump and submersible pump.

Practicals

Verification of Darcy's Law; Study of different drilling equipments; Sieve analysis for gravel and well screens design; Estimation of specific yield and specific retention; Testing of well screen; Estimation of aquifer parameters by Theis method, Coopers-Jacob method, Chow method; Theis Recovery method; Well design under confined and unconfined conditions; Well losses and well efficiency; Estimating ground water balance; Study of artificial ground water recharge structures; Study of radial flow and mixed flow centrifugal pumps, multistage centrifugal pumps, turbine, propeller and other pumps; Installation of centrifugal pump and study of cavitations; Study of hydraulic ram; Study and testing of submersible pump

Lesson Plan

Lecture	Topics	Article No.	Page No.	Book
No.				
(A)	Ground water and wells			
1	Occurrence and movement of ground water:		23-28, 6-8	2,3
	Origin and age of groundwater, rock properties		59-63	1
	affecting groundwater, Important definitions,	2.2		
	hydraulic conductivity, transmissibility, coefficient			
	of storage, specific yield, hydraulic resistance,			
	leakage factor.			
2	Aquifer and its types	1.2	7-9	1
3	Classification of wells	1.10	25-28	1
4	Steady and transient flow into partially, fully and			
	non penetrating and open wells:			
	Steady state flow to wells in unconfined aquifers			
	Steady state flow to wells in confined aquifers	2.3	63-71	1
	Unsteady state flow to wells in unconfined aquifers	2.4	74-76	
	Unsteady state flow to wells in confined aquifers			
5	Ground water exploration techniques	1.11	33-39	1
	Surface investigations of groundwater, sub surface	Chapter 9	219-232	2
	investigations of groundwater	Chapter 10	235-249	2
6	Design of open well	3.2	99-114	1
7	Methods of drilling of wells:	5.2	222-265	1
	Drilling equipment and methods,	5.3		
	Percussion drilling	5.4		
	Rotary drilling	5.6		
	Reverse rotary drilling	5.7		
		5.10		
		5.11		
		5.12		
8	Design of assembly and gravel pack:	4.9	192-197	1
	Design of tube well, analysis of particle-size	4.10		

	distribution of the aquifer, design of housing pipe	4.11		
	and well casing, bore size and well depth, selection	4.12		
	of strata to be screened			
9	Installation of well screen:	4.13	198-202	1
	Design of well screen, slot opening, percent open			
	area, diameter of the screen.			
10	Design of gravel pack:	4.14	202-210	1
	Design criteria for gravel pack, Gravel pack			
	material, screening of gravel			
11	Completion and development of well	6.1,		
		6.2,	310-329	1
		6.3		
		6.3.5	177-180	3
12	Aquiefer parameters determination:			
	Theis method	2.4	75-84	1
	Cooper-Jacob method			
	Chow method			
	Recovery method (Theis)			
13	Well interference	2.6	88-91	1
14	Multiple well systems	4.5	179-180	1
15	Ground water quality	1.13	42-45	1
		10.4	344-357	3
		10.5	358-366	3
16	Artificial recharge of ground water:	1.12	39-42	1
	Concept of artificial recharge,			
	Recharge methods			
17	Ground water modeling:	7.1,7.2,7.3,	2000-231	3
		7.4, 7.5		
(B)	Pumps			
18	Pumping systems and machinery:			
	Principles of lifting and moving of water, water	10.1	486-513	
	lifting devices: scoop, swing basket, Archimedian	10.2		1
	screw, counterpoise bucket lift, Persian wheel	10.3		

		10.4		
19	Classification of pumps		487	1
20	Centrifugal pump:			
	Classification of variable displacement pumps,	12.1	619-630	1
	principles of operation of centrifugal pumps, parts of	12.2		
	centrifugal pump, classification of centrifugal pump	12.3		
21	Power requirements in pumping	12.8	640-644	
22	Pump characteristic curves	12.9	645-648	
23	Pump performance:			1
	Effect of change of speed on head, capacity, power		650-652	
	and efficiency			
	Effect of change of impeller diameter on head,			
	capacity, power and efficiency System head curve			
24	Selection of centrifugal pump	12.11	652-657	1
25	Design of centrifugal pumps	13.1	676-683	
26	Centrifugal pump installation and trouble	14.1		
	shooting:	14.2	708-711	1
	Location, pump foundation, installation of	14.3	716-727	
	centrifugal pump in shallow/deep open well and in	14.4	741-745	
	tube well	14.5		
	Trouble-shooting in centrifugal pumps	14.11		
27	Hydraulic ram:	11.13	574-583	
	Application construction, Principle of operation,	11.14		
	advantages and limitations, efficiency of hydraulic	11.15		
	ram			
28	Propeller pumps:	16.1	797-806	
	Introduction, principles of operation, construction,	16.2		
	operating characteristics, installation	16.3		
		16.4		
29	Mixed flow pumps:	16.8	812-815	1
	Principles of operation, Operating characteristics	16.9		
	and installation, selection of mixed flow pump	16.10		
30	Priming and self priming	3.6	225-226	4

31	Rotodynamic pumps:			
	Deep well turbine pump:	15.1	747-755	1
	Introduction, principle of operation, construction,	15.2		
	characteristics of pump, selection of pump	15.3		
		15.4		
32	Submersible pumps:	15.11	780-795	1
	Introduction, construction, installation, operation of	15.12		
	pump, common troubles in operation and remedies.	15.14		
		15.16		

Practical:

- 1. Verification of Darcy's Law:
- 2. Study of different drilling equipments;
- 3. Sieve analysis for gravel and well screens design;
- 4. Estimation of specific yield and specific retention'
- 5. Estimation of aquifer parameters by Theis method, Coopers-Jcob method, Chow method,
- 6. Theis Recovery method;
- 7. Well design under confined and unconfined conditions,
- 8. Well losses and well efficiency;
- 9. Estimating ground water balance;
- 10. Study of artificial ground water recharge structures;
- 11. Study of radial flow and mixed flow centrifugal pumps, multistage centrifugal pumps, turbine, propeller and other pumps;
- 12. Installation of centrifugal pumps;
- 13. Testing of centrifugal pump and study of cavitations;
- 14. Study and testing of submersible pump.

BOOKS:

Text Book/books

Sr.No.	Title	Author	Publication
1	Water well and pump engineering	A.M. Michael and	Tata McGraw-Hill publishing
	(9 th Edition, 2005)	S.D. Khepar	Company Ltd. New Delhi
2	Groundwater hydrology (2 nd	David Keith Todd	John Wiley and sons, New York
	Edition)		(International Book Disturbing Co.
			Lucknow)
3	Groundwater hydrology	Herman Bouwer	McGraow-Hill publishing
	(International student Edition)		Company Ltd. New York.
4	Irrigation: Theory and Practices	A.M. Michael	Vikas publishing house Pvt. Ltd.
			New Delhi.

5	Groundwater Assessment and	K.R. Karanth	Tata McGraw-Hill publishing
	Management		Company Ltd. New Delhi.
	(11 th Edition, 2007)		
6	Irrigation Engineering and	S.K. Garg	Khanna Publisher 2-13 Nath
	Hydraulic Structures		Market Naisaraf, Delhi-06
	(14 th Edition, 1999)		

Theory

Drainage, objectives of drainage, familiarization with the drainage problems of the state, Surface drainage, drainage coefficient, types of surface drainage, design of open channel, subsurface drainage purpose and benefits, investigations of design parameters, hydraulic conductivity, drainable porosity, water table etc., drainage criteria, types and use of subsurface drainage system, Design of surface drains, interceptor and relief drains. Derivation of ellipse (Hooghoudt's) and Ernst's drain spacing equations. Steady and unsteady state groundwater condition, dynamic equilibrium concept, Design of subsurface drainage system. Drainage materials, drainage pipes, drain envelope. Layout, construction and installation of drains. Drainage structures. Vertical drainage. Bio-drainage. Tile Drains. Drainage of irrigated and humid areas. Salt balance, reclamation of saline and alkaline soils. Leaching requirements, conjunctive use of fresh and saline waters. Economic aspects of drainage.

Practicals

In-situ measurement of hydraulic conductivity by single auger hole method; *In-situ* measurement of hydraulic conductivity by inverse auger hole method; Determination of drainage coefficients; Installation of piezometer and observation well; Preparation of iso-bath and isobar maps; Determination of drainable porosity by sand tank model; Determination of drainable porosity by using field method; Design of surface drainage systems; Design of gravel envelop; Design of subsurface drainage systems; Determination of chemical properties of soil and water; Study of drainage tiles; Determination of gypsum requirement for land reclamation; Installation of sub-surface drainage system; Cost analysis of surface and sub-surface drainage system.

Lect.	Topics	Articles No.	Page	Book
No.			No.	
1	Drainage:	1.1	1-17	1
	Introduction, definition, Drainage problem of the	1.2		
	state and country, causes and effect of waterlogging,	1.3		
	prevention and control of waterlogging.	1.4,1.5		
2	Objectives of drainage:	1.6	18-23	1

Lesson Plan

	Need of drainage, purpose of drainage Effect of poor	1.7 &		
	drainage, benefits of drainage	Circulated notes		
	Drainage requirement of various crops			
3	Interrelationship of irrigation and drainage	2.1,2.2,2.3,2.3.1	27-40	1
		,2.3.2		
4&5	Surface drainage:	6.1	261-271	1
	Introduction, surface drainage system and	6.2		
	components, factors affecting drainage, types of	6.3		
	lands requiring drainage Drainage coefficient.	6.6		
6	Types of surface drainage:	6.10	261-271	1
	Surface drainage for flat areas	6.11		
	Surface drainage for sloping areas	6.12		
	Interceptor drain			
7,8,9	Design of surface drainage system:	6.4	230-234	1
	Design consideration, design of surface drainage	6.9	255-261	
	system, hydraulic design of open channel (drain)			
10	Subsurface Drainage			
11	Drainage properties-Structure and texture		480-481	2
	Drainable porosity		80-82	3
	Hydraulic conductivity		87-97	2
12	Subsurface drainage system:			
	Introduction, general considerations,	8.1	352-353	1
	Components of subsurface drainage system and	27.1	3-4	5
	different layouts of Subsurface drainage system	27.4.4	30-31	5
13,14,	Derivation of ellipse (Hooghoudt's)		149-156	3
15	*Ernst's drain spacing equations.	8.4.3	366-369	1
	Unsteady state equation (Glover-Dum)	11.4.2	155-160	4
16,17	Dynamic equilibrium concept	11.4.4	160-162	4
18	Drainage criteria for steady and unsteady state	11.1	133-138	4
		11.2		
		11.2.2		
19	Design of subsurface drainage system-problems	-	-	-
20,21	Drainage materials: Drainage pipes, drain envelop	27.5	33-41	5

	and drainage structures			
	**Design of gravel envelope	8.11.1	410	1
22,23	Installation of subsurface drainage system	8.12.3, 8.12.4,	418-426	1
		8.12.5, 8.12.6,		
		8.12.7,8.12.8		
24	Subsurface system design:	8.3	355-358	1
	Procedure, Hydraulic design of subsurface system.	8.8	391-400	
25	Mole drainage	27.3	9-14	5
	Bio-drainage	8.16.3	460-466	1
	Vertical drainage		579-580	2
26	Types of salt affected soil	7.3	313-315	1
	Chemical properties of soil	7.10		
	Classification of soil			
27,28	Reclamination of saline and alkali soils	7.12.2,	320-323	1
	Leaching requirement and methods	7.12.4,7.12.6	323-333	
	Gypsum requirement	7.13	334-343	
29	Salt balance	9.2	62-67	4
30	Economic aspects of drainage: Problem	8.10	438-466	1
31	Tile drain:	8.9	400-401	1
	Selection of tile, characteristics of good drain tile,			
	concrete tile, clay tile			
32	Drainage for humid and irrigated areas	Notes to be		
	Conjunctive use of fresh and saline water	circulated later		
		on		

Book

Text book/books

Sr.	Title	Author	Publisher
No.			
1	Agricultural Drainage:	U.S. Kadam, R.T. Thokal,	Westville Publishing
	Principles & Practices	Sunil Gorantiwar, A.G.	House, New Delhi
	(I st Edition)	Powar	

Reference book/books

Sr.	Title	Author	Publisher
No.			
2	Principles of Agricultural	A.M. Michael and T.P.	Jain Brothers Jodhpur
	Engineering Vol. II (1 st Edition)	Ojha	
3	Drainage Engineering	J.N. Luthin	Wiley Eastern Pvt.
			Ltd. New Delhi
4	Drainage Principles and		ILRI Publications,
	Application		Netherlands Vol.2
5	Drainage Principles and		ILRI Publications,
	Applications		Netherlands Vol.4

IDE-365 ADVANCED IRRIGATION SYSTEM DESIGN 2 (1+1)

Theory

Past, present and future need of micro-irrigation systems, Role of Govt. for the promotion of micro-irrigation in India, Merits and demerits of micro-irrigation system, Types and components of micro-irrigation system, Basic variables involved in design of irrigation methods.

Sprinkler Irrigation: system types, planning for design, uniformity and efficiency, layout of set sprinkler system, lateral, manifold and main delivery system. Pressure requirement and pump power unit selection. Economical pipe selection and system economics. Rain-gun irrigation system.

Trickle Irrigation: Different types of trickle, components of trickle system, planning the trickle system and design strategy Selection and design criteria for emitters. Lateral/ manifold and main pipe system design. Clogging, filtration, fertigation and chemigation. Maintenance and upkeep of trickle Irrigation. Cost economics of the system.

Practicals-

Study of different components of sprinkler irrigation system; Design of the sprinkler irrigation system.; Installation of sprinkler irrigation system; Determination of precipitation pattern, discharge and uniformity coefficient; Study of different components of trickle irrigation; Design of trickle irrigation system; Installation of trickle irrigation system; Determination of pressure discharge relationship and emission uniformity for given emitter; Study of different types of filters and determination of filtration efficiency; Determination of rate of injection and calibration for chemigation/fertigation; Field evaluation of drip system; Cost economics of drip irrigation system;

IDE 365 Advanced Irrigation System Design

2 = 1 + 1

Lesson plan:

Lecture	Topics	Article	Page	Book	
---------	--------	---------	------	------	--

No.		no.	no.	
1	Past, present and future need of micro-irrigation systems,	1.1,	1 - 4	3
	role of Govt. for the promotion of micro-irrigation in India	1.1.1,		
	(Statistics to be continuously updated)	1.1.1 a		
		to c,		
		1.6, 1.7	4, 10 - 11	6
		-	1 - 8	5
		-	9 - 15	7
		-	1 - 6	8
2	Merits and demerits of micro-irrigation system	1.1.4a,	16 - 19	3
		1.1.4b		
3	Types and components of micro-irrigation system,	1.1.2	5 - 11	3
		1.1.3	11 - 15	3
	Basic variables involved in design of irrigation methods.	-	4 - 5	4
4	Sprinkler Irrigation:	8.11	624-628	1
	Introduction, adaptability, limitations, types of systems	8.12	629-634	
	Components of the sprinkler system	8.13	636-639	
5	Uniformity and efficiency:	8.14	639-645	1
	Moisture distribution patterns and uniformity of coverage,			
	uniformity coefficient			
6	Design of Sprinkler irrigation system:	8.15	645-650	1
	Inventory of resources, layout of sprinkler system, sprinkler			
	selection and spacing, capacity of the sprinkler system			
7	Hydraulic design of sprinkler systems:	8.15	651-655	1
	Design of sprinkler laterals, main line pipe size			
8	Pressure requirement and power units	3.5	216 to 220	1
9	Economical pipe selection and system economics	3.24	279 to 282	1
10	Rain-gun irrigation system	Notes	s to be circul	ated
11	Trickle irrigation:			
	Introduction, benefits of trickle irrigation, components of trickle	-	6 - 9,	2
	system,	-	622 - 642	1b
12	Selection and design criteria for emitters		12 - 26	2

Design of lateral	-	60 -67,	2
		72 -77	
Design of sub main, main and pump	-	80 -91	2
Clogging and filtration	-	100-104	2
Fertigation and chemigation	-	104-109	2
Maintenance and upkeep of trickle irrigation	-	643-645	1b
Cost economics of the system	To be	e prepared by	y the
	con	cerned Teacl	her
Evaluation of trickle irrigation system	-	50 -55	2
	Design of sub main, main and pump Clogging and filtration Fertigation and chemigation Maintenance and upkeep of trickle irrigation Cost economics of the system	Design of sub main, main and pump - Clogging and filtration - Fertigation and chemigation - Maintenance and upkeep of trickle irrigation - Cost economics of the system To be contended	Design of sub main, main and pump-80 -91Clogging and filtration-100-104Fertigation and chemigation-104-109Maintenance and upkeep of trickle irrigation-643-645Cost economics of the systemTo be prepared by concerned Teact

Practical:

- 1. Study of different components of sprinkler irrigation system.
- 2. Design of the sprinkler irrigation system a case study.
- 3. Installation of sprinkler irrigation system
- 4. Determination of precipitation pattern, discharge and uniformity coefficient.
- 5. Study of different components of trickle irrigation.
- 6. Design of trickle irrigation system a case study.
- 7. Installation of trickle irrigation system
- 8. Determination of pressure discharge relationship.
- 9. Determination of emission uniformity of trickle irrigation system.
- 10. Study of different types of filters and determination of filtration efficiency.
- 11. Determination of rate of injection and calibration for chemigation/fertigation.
- 12. Field evaluation of drip system.
- 13. Cost economics of drip irrigation system
- 14. Cost economics of sprinkler irrigation system

BOOKS:

Text book/books

S.	N.	Title	Author	Publication
1	a	Irrigation Theory and Practice	A.M.Michael	Vikas Pub. House Pvt. Ltd. New
	b	First Edition, 1978 reprint 2002Irrigation Theory and Practice	A.M.Michael	Delhi Vikas Pub. House Pvt. Ltd. New
		Second Edition, 2008		Delhi.
	2	Trickle Irrigation Design	Jack Keller and David Karmeli	Rain Bird Sprinkler Manufacturing Co. Clendora, California, USA
	3	Trickle Irrigation for Crop	F.S.Nakayama &	Elsevier

Production, Design, Operation &	D.A.Bucks	
Management		

Reference book/books

S. N.	Title	Author	Publication
4	Design and evaluation of irrigation	A.M.Michael,	Water Technology Centre, New
	methods (IARI monograph No. 1)	Shri Mohan, K.R.	Delhi
		Swaminthan	
5	Micro-irrigation for cash crops	M.L.Choudhary,	Westvile Publishing house, New
		U.S.Kadam	Delhi
6	Principles of Drip Irrigation System	M.S.Mane,	Jain Brothers, New Delhi
		B.L.Ayare,	
		S.S.Magar	
7	Centrally Sponsored Scheme on	Anonymous	Ministry of Agriculture, Dept.
	Micro Irrigation (Drip & Sprinkler		of Agril. & Co-operation, New
	Irrigation) Guidelines		Delhi.2006.
8	Subsurface Porous Pipe Irrigation	R.S.Dhotre,	MPKV/RES/PUB/N.16/08
	System	S.D.Gorantiwar,	Dept. of Irrigation & Drainage
		S.B.Gadge,	Engineering,
		N.N.Firke	M.P.K.V., Rahuri.

(U. S. Kadam)	(R. S. Dhotre)	(S.D.Gorantiwar)	(M. S. Mane)
Course Coordinator	Head,	Associate Professor,	Associate Professor,
Professor and Head,	Deptt. of Irrigation and	Deptt. of Irrigation and	Deptt. of Irrigation and
Deptt. of Irrigation	Drainage Engineering,	Drainage Engineering,	Drainage Engineering,
and Drainage	MPKV, Rahuri.	MPKV, Rahuri.	Dr. BSKKV, Dapoli
Engineering, Dr.			
BSKKV, Dapoli			

(S. R. Kale)	(S. B. Gadge)	(P. M. Ingle)
Associate Professor,	Assistant Professor,	Assistant Professor,
Deptt. of Irrigation	Deptt. of Irrigation and	Deptt. of Irrigation and
and Drainage	Drainage Engineering,	Drainage Engineering,
Engineering, Dr.	MPKV, Rahuri	Dr. BSKKV, Dapoli
BSKKV, Dapoli		

MINOR IRRIGATION AND COMMAND AREA DEVELOPMENT

Syllabus:

Major, medium, and minor irrigation projects their comparative performance; development and utilization of water resources. Basic concepts of command area definition, need and scope: historical perspective, command area development authorities; Interaction/collaboration of irrigation water use efficiency and agricultural production. Farmers participation in command area development.

Description of components of irrigation canal system, their functions, planning and layout of canal irrigation system, preliminary design procedure for irrigation project and command area, crop water requirement, duty and delta, specific discharge of canal, design of canal by Kennedy and Lacey's theory and tractive force approach, Canal seepage and lining of canal, design of lined canal and economics.

Diversion head works and canal head regulators, hydraulic jump and its usefulness in the design of irrigation structures, theories of seepage, cross drainage works, canal falls, irrigation structures on distributory and minor, regulator and modules, operation and maintenance of canal.

Practicals-

Preparation of command area development layout plan; Irrigation water requirement of crops; Preparation of irrigation schedules; Design of lined irrigation canal; Planning and layout of water conveyance system; Hydraulic design of canal outlets; Hydraulics design of straight Glacis fall; Hydraulic design of aqueduct; Hydraulic design of siphon; Design of irrigation systems; Conjunctive water use planning; Determination of operation schedule for canal outlets based on rotational water supply; Technical feasibility and economic viability of a command area project; Study tour to minor irrigation and command area development projects

MINOR IRRIGATION AND COMMAND AREA DEVELOPMENT

Lesson plan:

Lecture	Торіс	Article no.	Page no.	Book	
No.					
1	Major, medium and minor irrigation		721 -723	4	
	projects their comparative				
	performance				
2	Development of utilization of water	-	57 - 70	4	
	resources				
3	Basic concept of command area:	-	14	4	
	Definition, need and scope, historical		1 – 5	2	
	perspective				
4	Command area development	Notes to be circulated			
	authorities, administrative structure				
5	Command area development	Notes	to be circulate	d	
	authority's interaction/collaboration				
	with water use Societies/Association				
6	Farmers participation in command	Notes to be circulated			
	area development				
7	Components of irrigation canal				
	system:				
	Distribution system for canal irrigation	3.4	66-68	1	
	Silt control devices	9.3.8	622-623	1	
	Fish ladder	9.3.6	612-615	1	
8	Planning and layout of canal	3.1	63-66	1	
	irrigation system,	3.2			
		3.3			
	preliminary design procedure for	12.2 -12.6	251 -255	2	
	irrigation project				
9	Preliminary design procedure for	5.1 - 6.0	3 - 21	3	
	command area				

10, 11	Crop water requirement: Introduction, crop period and base period, duty and delta of a crop, certain important definitions	2.1 2.2 2.3 2.5	25-31 32-35	1
12	Specific discharge of canal: Certain important definitions,	3.6 3.7	69-70 70-84	1
	Determination of required channel capacity			
13, 14, 15 & 16	Design of canal: i. Kennedy's theory ii. Lacey's theory iii. Tractive force approach Comparison of Kennedy's and Lacey's theory	4.7.3 4.7.4 4.1 – 4.4 4.7.5	108 -116 116 - 122 90 -94 122- 123	1 1 1
17	Canal seepage: Causes of failure, Blight's creep theory, Lane's weighted creep theory	11.1 11.2 11.3	643-647	1
18	Lining of canal: Advantages of lining, financial justification & economics of canal lining	5.1 5.2 5.3	184- 194	1

19		5.5	195 - 200	1
	Design of lined irrigation	5.6		
	channel			
20, 21				
	Diversion head works: Weir and barrage, gravity and non gravity weirs, layout of a diversion head works and components, certain important definitions	9.1 9.2 9.3.1 9.3.2	600-608	1
22		9.3.7	615-621	1
	Canal head regulators			
23,24	Hydraulic jump and its	10.1 10.2	633-639	1
	usefulness in the design of	10.2		
	irrigation structure:			
	Types of jump, momentum formula			
25, 26	Cross drainage works:			
	Types of cross drainage works, selection of drainage work, Types of cross drainage works	14.1 14.2 14.3	841-848	1
27	Canal falls:	12.1	734-744	1
	Definition, location, types of falls	12.2		
28,29	Canal regulator: Canal regulator works, alignment of the off-taking channel, Distributary head regulator and cross	13.1 13.2 13.3 13.4	797-800	1

	regulator			
30, 31	Canal outlet or modules: Requirements of good modules, types of modules. Criteria for judging the performance of modules, certain important definitions	13.8 13.9 13.10 13.11 13.12 13.13	817 - 836	1
32	Operation and maintenance of canal: i. Maintenance of irrigation canal ii. Operation of irrigation canal: water distribution methods & criteria of canal operation	4.13	175-179 1 - 16	1 5

Practical :

- 1. Preparation of command area development layout plan
- 2. Irrigation water requirement of crops based on duty, delta concept
- 3. Preparation of irrigation schedules
- 4. Design of lined irrigation canal
- 5. Planning and layout of water conveyance system
- 6. Hydraulic design of canal outlets
- 7. Hydraulics design of straight Glacis fall
- 8. Hydraulic design of aqueduct
- 9. Hydraulic design of siphon
- 10. Conjunctive water use planning
- 11. Determination of operation schedule for canal outlets based on rotational water supply
- 12. Technical feasibility and economic viability of a command area project
- 13. Study tours to minor irrigation and command area development projects

Book :

Text book/books

Sl.	Title	Author	Publisher
No.			
1	Irrigation Engineering and		Khanna Publishers,
		Santosh Kumar	New Delhi
	$(12^{\text{th}}\text{Revised ed}^n)$	9	
		Garg	
2	Irrigation Engineering and	S.R. Sahastrabudhe	
	Hydraulic structures		

Reference book/books

Sl.	Title	Author	Publisher
No.			
	Operation and management of irrigation system in Maharashtra State, Second Edition, Pub No. 20	-	WALMI Publications, Aurangabad
4.	Irrigation Theory and Practice	A.M. Michael	Vikas Publishing house Pvt. Ltd, New Delhi
5	Water distribution practices in Maharashtra State, Pub No. 22	-	WALMI Publications, Aurangabad

(U. S. Kadam)	(R. S. Dhotre)	(S.D.Gorantiwar)	(M. S. Mane)
Course Coordinator	Head,	Associate Professor,	Associate Professor,
Professor and Head,	Deptt. of Irrigation and	Deptt. of Irrigation and	Deptt. of Irrigation and
Deptt. of Irrigation	Drainage Engineering,	Drainage Engineering,	Drainage Engineering,
and Drainage	MPKV, Rahuri.	MPKV, Rahuri.	Dr. BSKKV, Dapoli
Engineering, Dr.			
BSKKV, Dapoli			

١

(S. R. Kale) (S. B. Gadge) (P. M. Ingle) Associate Professor, Assistant Professor, Assistant Professor, Deptt. of Irrigation Deptt. of Irrigation Deptt. of Irrigation and Drainage and Drainage and Drainage Engineering, Dr. Engineering, MPKV, Engineering, Rahuri Dr. BSKKV, Dapoli BSKKV, Dapoli

CAE-IDE-471 MICRO-IRRIGATON SYSTEMS DESIGN 3(2+1)

History and scope of micro-irrigation system, merits and demerits of micro-irrigation system, sprinkler irrigation – crop suitability, types, components, design-design synthesis, pumps and pressure unit selection, uniformity and efficiency, planning and layout, operation and maintenance, drip irrigation – potential, crop suitability, types, componenets, design, design synthesis, pumps and pressure unit selection, uniformity and efficiency, installation, operation and maintenance, fertigation, fertilizer application criteria, suitability of fertilizer compounds, injection duration, rate and frequency, capacity of fertilizer tank, quality of irrigation water, cost estimation of micro-irrigation.

Lesson plan:

Lecture	Topics	Article no.	Page no.	Book
No.				
1	Micro-irrigation system-importance, status, types, merits and demerits		1-11	3
2	Sprinkler irrigation and their components		23-45	1
3	Drip irrigation and their components		15-20	2
4	Design criteria and procedure for sprinkler nozzle		49-58	1
5	Distribution of moisture under sprinkler irrigation and overlapping of sprinklers		113-115	1
6	Computation of system capacity		59-65	1

		71-75	
7,8	Design of sprinkler irrigation pipe	65-71	1
	network on flat and sloping land		
9	Design of system under windy condition	590	
10	Design of pump unit	75-91	1
11	Evaluation of sprinkler irrigation system,	116-122	1
	uniformity, pressure- discharge etc.		
12	Drip irrigation emitters, design	12-18	3
	requirements, characteristics and types		
13	Design of orifice type and long flow path	18-23	3
	type of emitters,		
14	Pressure-discharge relationship of an	24-26	3
	emitters		
15	Distribution of moisture and salts in drip	100-107,	4
	irrigation system, spacing between	125-127	4
	emitters and number of emitters per plant		
	etc.		
16	Computation of water requirement and	27-44	3
	system capacity, determination of number	92-95	
	of subunits/values		
17	Design of drip irrigation laterals on flat	60-79	3
	and sloping lands		
18	Design of manifold under different	80-91	3
	scenario-slope, field size etc, design of		
	main		
19	Power requirement and pump selection		
20	Filtration system	131-139	2
21	Design of screen filter		
22	Design of sand filter		
23	Fertigation systems and deivices	109-118	2
24	Types of fertilizers and computation of	118-125	2
	fertilizer requirement		
25	Maintenance of drip irrigation system-	76-78	2

	acidification and requirement		
26	Chlorinfication and requirement	78-84	2
27	Evaluation of drip irrigation system manufacturing coefficient of variation, absolute and field emission uniformity	48-55	3
28	Automation of micro-irrigation system - Time based, Volume based - Sensor based	98-105	5
29	Optimization of pipe network in drip and sprinkler irrigation system	244-255	6
30	Economic feasibility of sprinkler irrigation system		
31	Economic feasibility of drip irrigation system	60-61	2
32	Government policies on micro-irrigation system		

Practical :

- 1. Estimation of water requirement of different crops under micro-irrigation system
- 2. Hydraulic design of lateral;
- 3. Hydraulic design of main and sub-main
- 4. Determination of fertilizer injection rate;
- 5. Determination of capacity of fertilizer tank;
- 6. Design of water filtration unit;
- 7. Design and layout of drip irrigation system for and orchard;
- 8. Design and layout of drip irrigation system for row crops;
- 9. Design and layout of sprinkler irrigation system;
- 10. Estimations for acid treatment and chlorination;
- 11. Study of components of automation in micro-irrigation systems;
- 12. Field visit of micro-irrigation system;

BOOKS:

Text book/books

S.N	Title	Author	Publication
1	Principles of sprinkler irrigation	M.S.Mane,	Jain Brothers, New Delhi
		B.L.Ayare,	
2	Principles of drip irrigation	M.S.Mane,	Jain Brothers, New Delhi
		B.L.Ayare,	
		S.S.Magar	
3	Trickle irrigation design	Jack Keller,	Rainbird Sprinkler
		David Karmelli	Manufacturing
			Corporation, California, USA
4	Trickle irrigation for crop	F.S.Nakayama,	Elsevier Publication
	production - design, operation	D.A.Bucks	
	and management		
5	Irrigation system; design and	D.Karmelli,	Oxford University Press, Capetown
	operation	G.Peri,	1985
		M.Todes	
6	Irrigation Engineering:	A. Benami and	Irrigation Engineering Scientific
	Sprinkler, trickle and surface	A. Ofen	Publication
	irrigation		Technion Israel Institute of
			Technology, Haifa, Israel

CAF-IDE-474 LIFT IRRIGATION SYSTEM DESIGN AND 3(2+1) MANAGEMENT

Site selection for lift irrigation and reconnaissance survey, survey and mapping of field, cropping pattern and computing water requirement, selection of site for intake and jack well, computing total head and power requirement, design of intake chambers, inlet pipe and pump house, selection of pump, pump layout and connection. Design and layout of rising main, distribution system and delivery chamber, working out water rates.

Lesson plan:

Lecture	Topics	Article no./	Book
No.		Page no.	No.
1	Introduction to lift irrigation, necessity and role of	249-250	1,
	lift irrigation schemes in irrigation development		2
2	Assessment of feasibility of lift irrigation project	250-251	1
3,4	Selection of site and reconnaissance survey for lift	257-260	1,2
	irrigation scheme		
5,6	Survey and leveling procedure	159-161	3
	i) Chain and Compass Survey	293-298	
	ii) Plain Table Surveyiii) Dumpy / Automatic level	371-379	
7	Water availability	251,255,256	1
8	Computation of water requirement and capacity of	25-35	4
	project		
9	Components of lift irrigation scheme i) Intake well	260-262	1
	- function, type, constructional details		
10	Sump well	268-269	1
11	Jack well	270-271	1
12,13	Intake pipe and rising main	278-280	1
		263-264	2
14	Pumps	487	5
15	Pump house	271-275	1
16	Delivery / distribution chamber	282-283	1

17	Electrical equipments and accessories	275-276	1
18	Valves and Water Hammer Contral Devices	633-635	1
		281-282	
19	Design of intake well	262-263	1
20	Design of intake pipe	264-267	1
21	Design of sump well	269-270	1
22	Specification of jack well	274-275	1
23	Pump house structure	272-273	1
24	Layout of rising main	280-281	1
25	Design of rising main	420-421	6
26-27	Computation of power requirement	209-213	1
		238-241	
28-29	Operation of lift irrigation scheme (Pump)	277-278	1
30-31	Economics of lift irrigation project	697-704	1
32	Norms for fixing economic water rate	283-285	1

Practicals :

- 1. Selection of site for lift irrigation scheme and reconnaissance survey,
- 2.3. Survey and mapping of field, including 'L' section
- 4. Estimation of water availability and computing water requirement
- 5. Design of intake well
- 6. Design of intake pipe
- 7. Design of sump well
- 8. Design of jack well
- 9. Computation of total head and power requirement
- 10. Selection of pump
- 11,12. Economic of lift irrigation project
- 13. Field visit to lift irrigation project

BOOKS:

Text book/books

S.N	Title	Author	Publication
1	Irrigation Theory and Practices (IInd	A.M.Michael	Vikas Publishing House Pvt.
	edition 2008)		Ltd.
2	Technical Aspects of Agricultural		NABARD Publication,
	Projects, Volume – 1		November 1989
3	Surveying & Leveling- I	T.P.Kanetkar &	Pune Vidyarthi Griha
		S.V.Kulkarni	Prakashan - Pune
4	Irrigation Engineering and Hydraulic	S.K.Garg	Khanna Publishers, Delhi
	Structures		
5	Water, Well and Pumps	A.M.Michael &	Tata McGraw Hill
		S.D.Khepar	Publication Co. Ltd. New
			Delhi
6	A Text Book of Fluid Mechanics and	R.K.Bansal	Laxmi Publications (p) Ltd.
	Hydraulic Machines (Eighth edition)		New Delhi